Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila
نویسندگان
چکیده
UNLABELLED BACKGROUND The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic-inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation process to technical syntheses of inorganic nano materials is desirable. In addition, environmental contaminations can be entrapped in biomineralization products which facilitate the subsequent removal from waste waters. The moderately halophilic bacteria Halomonas halophila mineralize calcium carbonate in the calcite polymorph. The biomineralization process was investigated in the presence of zinc ions as a toxic model contaminant. In particular, the time course of the mineralization process and the influence of zinc on the mineralized inorganic materials have been focused in this study. RESULTS H. halophila can adapt to zinc contaminated medium, maintaining the ability for biomineralization of calcium carbonate. Adapted cultures show only a low influence of zinc on the growth rate. In the time course of cultivation, zinc ions accumulated on the bacterial surface while the medium depleted in the zinc contamination. Intracellular zinc concentrations were below the detection limit, suggesting that zinc was mainly bound extracellular. Zinc ions influence the biomineralization process. In the presence of zinc, the polymorphs monohydrocalcite and vaterite were mineralized, instead of calcite which is synthesized in zinc-free medium. CONCLUSIONS We have demonstrated that the bacterial mineralization process can be influenced by zinc ions resulting in the modification of the synthesized calcium carbonate polymorph. In addition, the shape of the mineralized inorganic material is chancing through the presence of zinc ions. Furthermore, the moderately halophilic bacterium H. halophila can be applied for the decontamination of zinc from aqueous solutions.
منابع مشابه
Aquatic Biosystems
Background: The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic–inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by ...
متن کاملThe status of the genus name Halovibrio Fendrich 1989 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051. Request for an opinion.
During the course of studies on halophilic, Gram-negative bacteria, a comparison of two strains of halophilic bacteria, Pseudomonas halophila DSM 3050 and Halomonas variabilis DSM 3051 (formerly Halovibrio variabilis) demonstrated that the characteristics of strain DSM 3050 corresponded to the original description of Halovibrio variabilis and those of DSM 3051 to P. halophila, both of which had...
متن کاملEnvironmental parameters conditioning microbially induced mineralization under the experimental model conditions.
Microbially induced calcium carbonate precipitation is one of the biomineralization types closely dependent on the parameters of the microenvironment. Minerals are precipitated as a product of environmental and bacterial cell interactions, however, this system has very little control via microorganisms. The aim of research was to determine the influence of abiotic factors (pH, temperature, agit...
متن کاملUbiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix
Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combi...
متن کاملUnusual Crystal Formation in Organisms - Exceptions that Confirm Biomineralization Rules
Biomineralization is a complex combination of biochemical and physiological processes, depending on endogenous activity of an organism and the exogenous environmental influence. In marine organisms (bacteria, calcareous algae, molluscs, crustaceans, fish and mammals) biomineralization starts at early stages of development and continues during the entire life. These processes take place in diffe...
متن کامل